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MULTI-PERIOD PORTFOLIO SELECTION: A
PRACTICAL SIMULATION-BASED FRAMEWORK
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Nicholas Savoulidesa and Qi Zhenga

The topic of optimal portfolio selection over time has garnered significant attention
from investment researchers since the introduction of portfolio theory in 1952. While
computational, theoretical, and numerical methods have advanced, solutions introduced
to date have yet to effectively address many practical aspects of the multi-period portfolio
selection problem.

In this paper, we propose three key requisites for practical multi-period portfolio selection
solutions that highlight the central challenges of managing portfolios across a multi-
period investment horizon: effective duration management, incorporating real-world asset
dynamics, and considering investment frictions and illiquidities. Based on these criteria,

we detail an analytical framework for multi-period portfolio selection that provides intu-
ition and yields guiding principles that describe how allocations and duration should
evolve across a multi-period investment horizon, given specific investor objectives. We
then introduce a practical simulation-based portfolio selection (SBPS) framework and
present solutions for common investor objectives that are not only aligned with intuitive
principles but also demonstrate the flexibility afforded by SBPS in allowing us to address
the three stated requisites for practical multi-period solutions.

1 Introduction

A key distinction between single-period and
multi-period portfolio selection is the considera-
tion of intermediate actions within an investment

aInvesco, Boston, MA, USA.
bHarry Markowitz Co., San Diego, CA, USA

horizon that extends over many periods. In the
single-period setting, an investor decides how to
invest at the beginning of the period and then waits
until the end of the period to assess the outcome.
In practice, investing is not so straightforward.
Investors with long investment horizons, such as
pension fund managers or individuals planning
for retirement income, fund their portfolios over
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time and can have multiple objectives across a
multi-stage investment horizon that includes a
variety of intermediate actions.

There are many reasons why an investor might be
required to make intermediate decisions within
their investment horizon. These can include cash
inflows and/or outflows, changes in expectations,
changes in investment opportunities, rebalanc-
ing to maintain portfolio risk characteristics, and
changes in risk aversion. Investors generally
address many of these intermediate decisions by
updating their portfolios periodically. In practice,
investors commonly determine their optimal port-
folio allocations using long-term (10-year) return,
risk, and correlation forecasts. They then proceed
to update their allocations every 3 to 5 years. This
results in investors implementing a sequence of
single-period optimal portfolios, where no single
period allocation is ever held to the end of the
period for which it was intended.

While this type of approach allows for the con-
sideration of important and practical aspects of
investing over long horizons, it generally results
in less than optimal allocations, unnecessary
costs, and a failure to consider key aspects of
how to most efficiently evolve portfolio allo-
cations through time. This is so because the
approach does not explicitly account for interme-
diate actions or intertemporal allocation decisions
that have implications that extend across multiple
periods. Multi-period portfolio selection seeks to
address this by determining efficient time-varying
portfolio allocations across the investment hori-
zon in the context of specific investor objectives
while considering pre-determined intermediate
decisions.

Initial research on multi-period portfolio selection
by Mossin (1968), Merton (1969), and Samuel-
son (1969) focused on dynamic programming
solutions as originally suggested by Markowitz
(1959). Much of the subsequent research has

followed in the same vein and has served to
advance theory but has been significantly lim-
ited in its practical application by what Richard
Bellman, who introduced dynamic programming
in 1953, described as “the curse of dimension-
ality.” This explains that computational require-
ments increase exponentially as the number of
state variables considered in solving a dynamic
programming problem increase. While computa-
tional, theoretical, and numerical methods have
since evolved to a point where dynamic program-
ming approaches can now be used to provide more
practical solutions, many important aspects of the
multi-period problem have yet to be addressed.

In this paper, we introduce a simulation-
based portfolio selection (SBPS) framework that
addresses central challenges of implementing
and managing portfolios across a multi-period
investment horizon: effective duration manage-
ment, incorporating real-world asset dynamics,
and considering investment frictions and illiquidi-
ties. The framework produces multi-period solu-
tions that align portfolio durations with expected
cash flows and allows for the inclusion of
individual hold-to-maturity and defined-maturity
investments alongside traditional assets, such
as duration-targeted fixed-income investments,
regularly used for strategic asset allocation.1

We have organized the paper as follows. Section 1
provides a brief literature review of multi-period
and related research. Section 2 proposes three
key requisites for practical multi-period portfo-
lio selection solutions and provides supporting
discussion for each. Section 3 sets up the multi-
period problems on which we will be focusing
by presenting the objective functions for two
common investor types: Growth investors, who
seek to maximize terminal wealth, and Income
investors, who seek to maximize a series of
future cash flows. We also distinguish between
growth and duration assets. In Section 4 we
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detail an analytical framework that considers the
distinction between growth and duration assets
and produce analytical solutions for Growth and
Income investor objectives. We consider scenar-
ios when no cash flows are expected and when
both cash inflows and outflows are expected for
cases when only growth assets are considered as
well as when both growth and duration assets
are considered. We present the analytical solu-
tions and assess the sensitivities of allocations
and durations to correlations between assets and
to different yield curve slopes. We then share
key observations from our assessment of the ana-
lytical solutions that will then serve as guiding
principles for how we should expect allocations
to evolve over a multi-period investment horizon,
given specific investor objectives. In Section 5,
we introduce a practical simulation-based portfo-
lio selection framework and present multi-period
solutions that are not only aligned with the princi-
ples developed as part of our analytical exercise
but also demonstrate the flexibility afforded by
SBPS in allowing us to address the three stated
requisites for practical multi-period solutions. We
conclude in Section 6.

2 Multi-period Portfolio Selection theory
and related literature

Markowitz’s (1952) Portfolio Selection paper
forever changed the practice of investment man-
agement by introducing a framework for single-
period portfolio selection. In 1959, Markowitz
presented a much broader exposition of the frame-
work and also provided guidance on the prob-
lem of portfolio selection through time. Here
he explained how, under certain conditions, a
dynamic programming approach could be used
to provide an exact solution.2 He conceded,
however, that dynamic programming techniques
were probably infeasible due to the computa-
tional requirements of even the simplest of utility
functions.3

Over the following decade, multi-period portfolio
selection theory advanced notably with Mossin’s
(1968) and Samuelson’s (1969) discrete-time
dynamic programming models and Merton’s
(1969) continuous-time counterpart. An interest-
ing and counterintuitive result of this initial work
was the concept of myopic portfolio choice. This
was the special case where a multi-period investor
would hold the same portfolio as that of a single
period investor. This result indicated that a multi-
period investor would not become more cautious
as they approach retirement. This special case,
however, is a function of a particular set of sim-
plifying assumptions.4 Research from this point
forward generally explored the conditions under
which myopic portfolio choice held. Of particular
interest was the work by Hakansson (1971) that
discussed the implications of serial correlations
in yields on multi-period portfolio choice.

Following this initial work, many of the subse-
quent advances in multi-period theory were again
predominantly based on dynamic programming.
Campbell and Viceira (2002) provide an excellent
overview of advances in multi-period portfolio
selection as well as discussion regarding the many
challenges faced by long-horizon investors. This
work also includes an insightful discussion and
guidance regarding the incorporation of specific
types of bonds for long-horizon investors. Along
these lines, Fisher and Weil (1971) expand on
Macauley’s (1938) work on understanding the
implications of changes in the yield curve on
bond portfolio values and demonstrate that fixed-
income instruments have important intertemporal
relationships. Langetieg et al. (1990) discuss
“partial immunization” of duration risk using
duration-targeted fixed-income strategies across
multi-period horizons. Liebowitz et al. (2014)
expand on the distinctive nature of duration-
targeted investments and implications for those
types of investment across multi-year investment
horizons.
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As multi-period research continued, thinking on
other important aspects of long-horizon invest-
ing was advancing. Markowitz (1991) proposed
a “Game of Life” simulation for modeling the
complex investment planning problems faced
by individual investors. Markowitz and van
Dijk (2003) presented a dynamic programming
approximation that could allow for the efficient
reallocation of portfolios over time and changing
market conditions. Wilcox et al. (2008) present
a framework for considering taxes as part of the
portfolio management process. Hoevenaars et al.
(2009) explore the implications of incorporating
alternative asset classes into long-horizon port-
folios. Finally, Blay and Markowitz (2016) and
Markowitz (2016) present a simulation-based Net
Present Value portfolio analysis approach that
explicitly accounts for the impact of taxation on
assets invested across a multi-period investment
horizon.

While thinking was advanced on many aspects
of long-horizon investing, the practical imple-
mentation of dynamic programming approaches
originally proposed would remain well beyond
computational capabilities until recently when a
combination of advances in theory and compu-
tational power has allowed for the computation
of solutions of greater relevance to investors.
Dempster and Medova (2011) presents an indi-
vidual asset liability management model for life
cycle planning using dynamic stochastic opti-
mization that also considered the implications
of taxation on assets. Das et al. (2018, 2019)
present dynamic programming approaches (with-
out tax considerations) to solving the multi-period
portfolio selection problem with both single and
multiple objectives.

The simulation-based multi-period portfolio
selection framework proposed in this paper builds
on much of the thinking to date on long-horizon
multi-period investing but diverges in that it does

not employ dynamic programming. Instead, we
propose a much more flexible framework that
decomposes the multi-period problem into three
distinct parts: the objective function, simulation,
and optimization. This not only provides substan-
tial flexibility in addressing the central challenges
of implementing and managing portfolios across a
multi-period investment horizon, it also facilitates
the advancement of multi-period portfolio selec-
tion research as innovations in any of the three
areas can easily be incorporated into the proposed
framework. This stands in contrast to dynamic
programming approaches where consideration
of additional real-world aspects of multi-period
portfolio management likely requires a non-trivial
reformulation of the solution to be used.

3 Requisites for practical multi-period
Portfolio Selection

As computational power, theory, and numeri-
cal methods have evolved, so too must multi-
period investing solutions evolve to account for
the practical realities involved in implementing
and managing portfolios across long investment
horizons. In this section, we propose three requi-
sites for practical multi-period portfolio selection
solutions.

3.1 Solutions must evolve allocations
and duration over time to align with
expected cash flows

The multi-period portfolio selection problem dif-
fers most notably from the single period problem
in that it typically considers long investment hori-
zons and generally includes expected cash inflows
and outflows. The implications of this must be
reflected in both the evolution of allocations and
in the duration profiles of proposed solutions
across the investment horizon.

To demonstrate the importance of the above, we
examine what constitutes a risk-free asset. In
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the single period context, cash or US Treasury
bills are often considered risk-free assets due to
their low volatility. However, over long invest-
ment horizons, these assets expose investors to
meaningful uncertainty. Longer duration bonds
held in the context of a duration-targeted index
fund also experience a similar challenge as they
remain exposed to a relatively constant amount
of interest rate risk through time. Allowing for a
time-varying duration profile can address the lim-
itations of both these alternatives. Consider an
investor needing to fund a liability in 10 years.
Figure 1 presents 20 simulated paths for three
alternative approaches: investing in a money mar-
ket fund, investing in a duration-targeted index
fund of Treasury bonds with a duration of 10 years
and investing in a 10-year zero coupon Treasury
bond. As can be seen, despite exhibiting meaning-
ful volatility early on, the zero-coupon Treasury
bond, with its accompanying declining duration
through time resulted in the lowest risk solution.

This leads to the important conclusion that effec-
tive duration management is an important aspect
of multi-period solutions. In cases like the one
above, hold to maturity investments can be
the most efficient assets to employ. Alterna-
tively, or in more complex cases, time-varying
combinations of short- and long-duration bond

funds can also be used to achieve the desired
behavior.

3.2 Solutions must consider real-world
asset dynamics

Similar to the portfolio construction process, asset
pricing dynamics need to also reflect some of the
unique characteristics of long-horizon investing.
These asset price characteristics can materially
impact how theoretical solutions actually perform
when implemented in the real world. There is
ample evidence for this view in the literature.
Looking at equities, Poterba and Summers (1988)
consider whether prices are mean-reverting, using
data from the United States and 17 other countries.
Their estimates imply positive autocorrelation in
returns over short horizons and negative auto-
correlation over longer horizons. Spierdijk et al.
(2012) present evidence of mean reversion for
17 developed economies. Spierdijk and Bikker
(2012) conclude that if stock prices are mean-
reverting, stocks are relatively less risky for
longer investment horizons, so that a larger share
of wealth may be allocated to stocks. The same
is true if stock returns show negative autocorrela-
tion, which is often referred to in the literature
as mean reversion in stock returns. Kinlaw et
al. (2014) discuss the misestimation of both risks

Figure 1 Twenty simulated paths representing growth of $1 invested in a money market fund, a rebalanced
10-year constant duration treasury bond index and a 10-year zero-coupon bond held to maturity. The duration
through time of these investments is plotted against the right axis.
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and correlations that result from the practitioner
assumption that asset prices are independently
and identically distributed (i.i.d.). They explain
that these misestimations are a direct result of
the fact that financial time series often exhibit
serial dependence, mean reversion, trending,
and/or risk clustering. Davis (2014) argues that
investment consulting firms that provide stochas-
tic modeling seem to believe in mean reversion,
since almost all of them regularly adjust their
assumption for future stock returns based on some
measure of stock valuation levels (e.g., dividend
yield, or P/E ratios).

Effective duration management and the incorpo-
ration of individual fixed-income instruments also
require that the modeling of fixed-income securi-
ties aligns with prevailing interest rate dynamics.
For example, assuming normal or lognormal dis-
tributions for fixed-income security returns in a
low rate environment may imply some unrealistic
scenarios. For such instruments, it is impor-
tant to first model yield curve movements and
then price securities off the resulting curves. The
modeling of the yield curve itself needs to also
align with various foundational assumptions. For
example, some models do not allow for negative
interest rates, while others allow for rates to go
only slightly negative in line with what has been
recently observed in various economies.

3.3 Solutions must consider investment
frictions and illiquidities

In practice, investing is rarely as simple as mak-
ing a single initial investment in a portfolio that
is held until the end of an investment period.
Real-world portfolios implemented across mul-
tiple periods are regularly updated for a variety
of reasons. This includes updates resulting from
cash inflows, cash outflows, the purchase, sale
or replacement of funds or securities, portfolio
rebalancing, and changes in preferences. All these
intermediate portfolio management decisions can

have significant implications for investing out-
comes. For example, transaction fees can erode
portfolio balances over time especially if they are
high and/or frequent. Trading can also result in tax
consequences. Taxation significantly increases
the complexity for multi-period solutions due to
the path- and time-dependent nature of taxation.5

Over the short term, these real-world elements of
investing may only result in negligible differences
in expected outcomes. Over the long term, how-
ever, significant differences between actual and
expected outcomes can arise from not adequately
accounting for the impact of these elements. Con-
sequently, practical solutions that must ultimately
distinguish between successful and unsuccessful
outcomes must consider the impact of these real-
world aspects of investing if they are to provide
investors with reliable information that can be
used to support investment decision-making for
long-horizon investing.

4 Setup

The general multi-period portfolio selection prob-
lem can be summarized as consisting of an initial
investment followed by a series of funding cash
inflows made during an accumulation period that
are then followed by a series of consumption cash
outflows during a consumption period. The size
and timing of cash flows can vary. Funding a
bequest at the end of the investment horizon might
also be a consideration. In short, investors may be
concerned with funding consumption cash flows,
the amount of terminal wealth or both. We can
describe the problem more precisely using the
following notations:

• The investor has an investment horizon of T

periods indexed by t = 0, 1, . . . , T

• The investor has access to N assets
• The N × 1 random vectors rt for t =

0, 1, . . . , T − 1 represents the asset returns
observed between time t and t + 1
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• The investor has an initial capital C0 at time
t = 0. Additionally, the investor will real-
ize a series of net cash flows C1, C2, . . . , CT

in future at time t = 1, 2, . . . , T . Cash
inflows are positive whereas outflows are
negative

• The investor follows an investment strat-
egy through time given by the sequence of
N × 1 portfolio weight vectors wt for t =
0, 1, . . . , T − 1. We represent the investment
strategy by W = (w0, w1, . . . , wT−1)

• The portfolio wealth through time is Pt for
t = 0, 1, . . . , T ; the starting portfolio wealth
P0 is the same as the initial capital C0

Portfolio wealth evolves through time recursively
as Pt+1 = Pt(1 +wT

t rt)+Ct+1. Notice that Pt+1

depends on the weight vectors or investment deci-
sions up to time t. Thus, Pt+1 is a function of
(w0, w1, . . . , wt). In particular, the terminal port-
folio wealth PT is a function of all the weight
vectors up to time T − 1 (i.e., a function of
W = (w0, w1, . . . , wT−1)). We can expand the
recursive nature of the portfolio wealth to write
the terminal portfolio wealth as:

PT (W) = PT =
T−1∑
t=0

Ct(1 + wT
t rt) . . . (1 + wT

T−1rT−1) + CT .

(1)

We will next consider the objectives of two
types of investors: Growth investors and Income
investors. Below we detail the objective functions
we use for each of these investor types.

4.1 The growth investor’s objective

The growth investor seeks to maximize termi-
nal wealth while reducing the uncertainty around
terminal wealth outcomes. The growth objective
seeks to maximize the objective function:

J(W) = Qα(W) − λ(Qα(W) − Qβ(W)). (2)

where Qα(W) and Qβ(W) are the α-th and β-
th quantiles of the probability distribution of the
terminal wealth PT (W). In particular, we view
Qα(W) as a percentile-based measure of cen-
tral tendency, i.e., the median of PT (W). This
is an important distinction for the distribution of
long-horizon investing outcomes which tend to
be skewed with fat right tails that can bias the
mean value of terminal wealth. We view Qβ(W)

as a percentile-based risk measure such as the
5th percentile of PT (W). The parameter λ > 0
is a control parameter that balances the reward
(median) against the risk (median minus the 5th
percentile). This describes an investor seeking
to maximize median wealth with an aversion to
unfavorable terminal wealth outcomes.

4.2 The Income investor’s objective

The Income investor seeks to maximize a series
of consumption cash flows for a given probability
of remaining solvent. This describes a multi-
period income maximization problem. Given a
pre-defined cash flow schedule C0, C1, . . . , CT ,
which can include both inflows and outflows, we
consider an investor who seeks to make a series
of additional withdrawals A, over and above the
pre-defined cash flows. The income investor seeks
to consume the additional amount A starting at
t = TA until t = T , where t = TA is the
time at which the additional consumption begins.
The set of cash flows for the investor are now
C0, C1, . . . , CTA

− A, . . . , CT − A. Instead of
maximizing the income withdrawal directly, we
maximize the probability of staying solvent up
to time t = T subject to the additional with-
drawals. The income investor seeks to maximize
the objective:

J(W) = Prob(τA(W) ≥ T + 1), (3)

where τA(W) is the timing of the insolvency event
otherwise described as the discrete point in time
when wealth as a function of W and A falls below
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zero for the first time. The formulation of this
objective function describes an investor seeking
to maximize the probability of remaining solvent
up to time t = T subject to a certain amount of
additional periodic withdrawals.

In Section 6, we present a simulation-based port-
folio selection (SBPS) approach for the above two
variations in the multi-period problem. However,
we first provide approximate analytical solutions
to these multi-period problems in the next section.
This will allow us to develop intuition behind the
dynamics of multi-period solutions as well as help
us explain the results from our simulation-based
portfolio selection approach.

5 An analytical multi-period Portfolio
Selection framework

To develop intuition as to how portfolio allo-
cations might be expected to evolve across an
investor’s investment horizon, we begin by pre-
senting an analytical solution to the Growth
investor’s problem. We then proceed to show
that the Income investor’s problem can be solved
by solving a sequence of growth investor prob-
lems — a key duality principle.

Furthermore, to address the problems analyt-
ically, we will explore the first order drivers
of portfolio wealth which drive optimal solu-
tions. Observe that for small portfolio returns
r1, r2, . . . , rn we can approximate the com-
pounded return (1 + r1)(1 + r2) . . . (1 + rn) as
1 + r1 + r2 + · · · + rn. Using this approxima-
tion, we can write the first order approximation
P

(1)
T (W) of the terminal wealth PT (W) as:

P
(1)
T (W) =

T−1∑
t=0

Ct(1 + wT
t rt

+ · · · + wT
T−1rT−1) + CT

=
T−1∑
t=0

XtwT
t rt + XT , (4)

where Xt = C0 + · · ·+Ct are the partial sums of
the cash flows for t = 0, 1, . . . , T .

With this first-order approximation of terminal
wealth, we are ready to explore the analytical
solutions to the two types of investor prob-
lems described in the previous section. In Sec-
tion 5.1, we focus on solving for the Growth
investor’s objective and distinguish between
growth and duration assets and then derive
solutions for Growth-Only (Section 5.1.1) and
Growth + Duration (Section 5.1.2) asset port-
folio cases. In Section 5.1.3, we explore the
behavior of the solutions for these two cases
and assess the impact of cash flows, asset cor-
relations, and interest rate characteristics on the
solutions which allows us to intuit key aspects of
multi-period portfolio selection. Finally, in Sec-
tion 5.2, we discuss a duality principle that allows
us to view the solution to the income investor’s
objective as a solution to the growth investor’s
objective.

5.1 Analytical formulation of the growth
investor objective

A key limitation of a median-percentile objec-
tive is the lack of analytical tractability of the
derivatives. The mean–variance objective over-
comes this limitation by allowing us to write down
derivatives analytically and thus, serves as a nat-
ural proxy of the median-percentile objective in
our analytical framework. We seek to maximize
the following mean–variance objective function
for the first-order terminal wealth:

J(W) = E(P
(1)
T (W)) − λ Variance(P(1)

T (W)).

In our analytical framework, we consider two dis-
tinct types of assets that we define as growth and
duration assets:

GrowthAssets are assets that produce returns pri-
marily through capital appreciation. These types
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of assets often have the potential for higher invest-
ment returns over the longer term, but they also
tend to exhibit higher investment risk. Examples
of growth assets include individual stocks, equity
funds, commodities, multi-asset funds, private
real estate, and private equity investments.

Duration Assets are assets that produce returns
primarily through income payments rather than
capital appreciation. For the purposes of this
paper, we will limit such assets to government
issued securities with no embedded default risk.
Examples include Treasury bills, Treasury bonds,
zero-coupon bonds, and TIPS. If held to maturity,
the return of these instruments is known with vir-
tual certainty. Prior to maturity, these instruments
also exhibit duration risk, meaning that their price
and corresponding periodic returns are directly
linked to changes in interest rates.

To provide insight into the dynamics of the
multi-period mean–variance problem we will first
consider solutions for portfolios composed exclu-
sively of growth assets and then extend our results
to solutions for portfolios composed of both
growth and duration assets.

5.1.1 Growth asset portfolios (Growth-Only)

We first consider the case when the investment
opportunity set consists exclusively of growth
assets. Let the return vectors of the growth assets
be rt for t = 0, 1, . . . , T − 1 which are assumed
to be independently and identically distributed
(i.i.d.) normal random variables with mean μ and
covariance matrix �. The optimal weight vector
wt is:

wt =
(

I

−1T

)
A−1

(
1

2λXt

m + b
)

+ eN,

(5)

where I is the N − 1 ×N − 1 identity matrix, 1 is
the N − 1 × 1 vector of ones, and eN is the N × 1

index vector with one at the N-th position and
zero everywhere else. The N − 1 × 1 vector m is
the vector of excess returns of the first N−1 assets
over the N-th asset, and the N −1×N −1 matrix
A = (I − 1)�(I − 1)T is the relative covariance
matrix of the first N − 1 assets with respect to the
N-th asset, and finally the N − 1 × 1 vector b =
(−I 1)�eN captures the diversification benefit of
the first N − 1 assets with the N-th asset.

See Appendix A for proof of the above formula.

5.1.2 Growth and duration asset portfolios
(Growth + Duration)

We can now move to consider the case where the
investor has access to one growth asset and one
duration asset. The investor can choose a duration
asset of any duration at each point in time. We seek
to determine:

• the optimal allocation between the growth
and duration assets

• the optimal duration of the duration asset
chosen in each period

We assume that a simplistic yield process drives
the price of the duration assets. The discrete time
instantaneous yield process is given by:

yt = y0 + �y0 + �y1 + · · · + �yt−1,

where �yt are independently and normally dis-
tributed as N(μy,t, σ

2
y) for t = 0, 1, . . . , and

the time dependent parameter μy,t represents the
drift of the instantaneous yield process and can be
used to describe a changing rate environment such
as increasing or decreasing or flat. The parame-
ter σy captures the volatility of the instantaneous
yield process. Additionally, at any time t, the
yield curve is linear with a total slope s up to the
maximum maturity Tmax. Schematically the yield
curve at time t is represented below.
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Figure 2 The yield curve at time t. Here, the instan-
taneous yield is yt and the Tmax maturity bond has a
yield of yt +s. In particular, a T < Tmax maturity bond
has a yield of yt + Ts/Tmax.

Under the above process, the yield of the T -
maturity bond at time t is given by:

y
(T)
t = yt + Ts

Tmax
.

In addition to the yield process, we describe
the growth asset return through time rt for t =
0, 1, . . . as i.i.d. N(μg, σ

2
g), and at any time t

the growth asset return rt and the change in
instantaneous yield �yt has a correlation ρg,y,
i.e., cov(rt, �yt) = ρg,yσgσy. The correlation
between the duration asset and the growth asset
is approximately ρd,y = −ρg,y.

Using this setup, we provide the analytical solu-
tion for the optimal growth asset allocation and
the optimal duration through time as the solu-
tion to the mean–variance problem. Let w =
(w0, w1, . . . , wT−1) represent the growth asset
weights and D = (D0, D1, . . . , DT−1) the dura-
tion of the duration asset through time. The
mean–variance objective function as shown in
Appendix B is not a quadratic function in the
unknowns w and D. However, if the durations
D0, D1, . . . , DT−1 are known, then the objective
function is quadratic in w0, w1, . . . , wT−1 and
vice versa. This allows us to provide an explicit

formula for the optimal growth asset allocation
when the durations are known and the optimal
durations when the growth asset allocations are
known.

When the optimal durationsD
(λ)
0 , D

(λ)
1 , . . . , D

(λ)
T−1

are known, then the optimal growth asset weights
through time w = (w0, w1, . . . , wT−1) are:

w = U−1
(

1

2λ
m − v

)
(6)

and alternatively, when the optimal growth asset
weights w

(λ)
0 , w

(λ)
1 , . . . , w

(λ)
T−1 are known, the

optimal duration is:

Dt =
T−1−t∑
k=0

Xt+k(1 − w
(λ)
t+k)

Xt(1 − wλ
t )︸ ︷︷ ︸

cash flow
contribution

+ ρg,yσew
(λ)
t

σy(1 − w(λ))︸ ︷︷ ︸
correlation
contribution

− μy,t

2λXt(1 − w
(λ)
t )σ2

y︸ ︷︷ ︸
yield drift contribution

+ s

λXtTmax(1 − w
(λ)
t )σ2

y︸ ︷︷ ︸
slope

contribution

, (7)

where μμμD is the mean return vector of the dura-
tion asset through time (detailed in Appendix B)
and the vector m = μgXd1 − XdμD is the vector
of dollar-weighted excess returns of the growth
asset relative to the duration asset. The vec-
tor v = (ρg,yσgσyXdXu − σ2

yXT
u Xu)1 captures

the dollar-weighted diversification benefit of the
duration asset with the growth asset. Finally, the
matrix U = σ2

gX2
d + σ2

yXT
u Xu − 2ρg,yσgσyXdXu

is defined in terms of the diagonal matrix Xd and
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the upper triangular matrix Xu.

Xd =

⎛
⎜⎜⎜⎜⎝

X0 0 · · · 0

0 X1 · · · 0
...

...
. . .

...

0 0 · · · XT−1

⎞
⎟⎟⎟⎟⎠ and

Xu =

⎛
⎜⎜⎜⎜⎝

X0 X1 · · · XT−1

0 X1 · · · XT−1

...
...

. . .
...

0 0 · · · XT−1

⎞
⎟⎟⎟⎟⎠

− diag (D)Xd.

See Appendix B for proofs of the above formulas.

5.1.3 Analytical examples and key insights

We are now ready to explore analytical solutions
to the Growth investor problem with two multi-
period scenarios, one with no cash flows and one
with cash inflows and outflows:

Scenario 1: Maximize terminal wealth (no cash
flows)

• A 10-year investment horizon
• An initial investment of $1,000
• No cash flows

Scenario 2: Maximize terminal wealth (with
cash inflows and outflows)

• A 10-year investment horizon
• An initial investment of $1,000
• Annual inflows of $500 over the first 5 years

and annual outflows of $500 over the last 5
years

For each scenario we consider the following two
cases distinguished by the assets made available
for portfolio construction:

• Growth-Only: we consider two growth
assets; a high growth asset with a mean return
μ1 = 6% and volatility σ1 = 15% and a low
growth asset with a mean return μ2 = 2%
and volatility σ2 = 4%

• Growth+Duration: we consider the high
growth asset and a duration asset priced off
of a yield process starting at initial yield y0 =
2% with no drift and volatility σy = 1%.

Growth-Only and Growth+Duration efficient
frontiers are produced for each of these scenarios
by maximizing the objective:

E(P
(1)
T (W)) − λ Variance(P(1)

T (W)),

for a range of λ values with λ ≥ 0. To facilitate
our understanding of the evolution of portfolio
allocations and portfolio durations across multi-
period investment horizons, we consider a single
solution from each of the frontiers. To best
demonstrate the dynamics of multi-period portfo-
lio selection we focus on mid-frontier solutions.
For Growth-Only frontiers we select solutions
with a 50%/50% average allocation to low and
high growth assets. For Growth+Duration fron-
tiers we select solutions with a 50%/50% average
allocation to growth and duration assets.

Furthermore, we analyze the sensitivity of the
Growth-Only allocations to the growth asset cor-
relations (ρ = −1, 0 and 1) and the sensitivity
of Growth+Duration allocations to the growth-
duration asset correlations (ρg,d = −ρg,y =
−0.25, 0 and 0.25) and yield curve slope (s =
2%, 0% and − 2%). Figures 3 and 4 present
cash flows, Growth-Only allocations through
time, and Growth+Duration allocations and dura-
tions through time for the two growth investor
scenarios.

Based on the analysis and the examples presented,
we make the following key observations in the
context of a growth investor’s terminal wealth
maximization objective.
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Growth Investor Scenario 1: Maximize Terminal Wealth (no cash flows)
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Figure 3 (a) Scenario cash flows. Terminal wealth at t = 10 to be maximized (b) Growth-Only allocations
for three asset correlation scenarios. (c) Growth + Duration allocations and durations for nine (3 × 3) asset
correlation and yield curve slope combinations.
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(a)

(b)

(c)

Growth Investor Scenario 2: Maximize Terminal Wealth (with cash inflows and outflows)

C
as

h 
F

lo
w

s 
($

)

Time (years)
 Inflows  Outflows  Terminal wealth

G
ro

w
th

-O
nl

y

ρ = −1 ρ = 0 ρ = 1

A
ll

oc
at

io
n 

(%
)

Time (years)

 % High Growth Asset  % Low Growth Asset

ρg,d = −0.25 ρg,d = 0 ρg,d = 0.25

G
ro

w
th

+D
ur

at
io

n

sl
op

e 
= 

2%

A
ll

oc
at

io
n 

(%
)

D
ur

at
io

n 
(y

ea
rs

)

sl
op

e 
= 

0%
sl

op
e 

= 
-2

%

Time (years)
 % Growth asset  % Duration asset Asset duration Portfolio duration

?
-1,500
-1,000

-500
0

500
1,000
1,500

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

0

25

50

75

100

0 2 4 6 8
0

10

20

30

0

25

50

75

100

0 2 4 6 8
0

10

20

30

0

25

50

75

100

0 2 4 6 8

0

10

20

30

0

25

50

75

100

0 2 4 6 8
0

10

20

30

0

25

50

75

100

0 2 4 6 8
0

10

20

30

0

25

50

75

100

0 2 4 6 8

0

10

20

30

0

25

50

75

100

0 2 4 6 8
0

10

20

30

0

25

50

75

100

0 2 4 6 8
0

10

20

30

0

25

50

75

100

0 2 4 6 8

0

10

20

30

0

25

50

75

100

0 2 4 6 8
0

10

20

30

0

25

50

75

100

0 2 4 6 8
0

10

20

30

0

25

50

75

100

0 2 4 6 8

Figure 4 (a) Scenario cash inflows/outflows. Terminal wealth at t = 10 to be maximized (b) Growth-Only
allocations for three asset correlation scenarios. (c) Growth + Duration allocations and durations for nine (3×3)
asset correlation and yield curve slope combinations.
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Solutions should shift to safer (riskier)
allocations as inflows (outflows) occur

Examining the Growth-Only portfolios in Figure 3,
we observe that in the absence of flows, allo-
cations between low-risk and high-risk assets
remain unchanged through time. This is a direct
result of the commutative nature of how portfolios
deliver performance. Good or bad, performance
will have the same impact on the terminal wealth,
irrespective of whether it occurs earlier or later.
However, when we introduce inflows/outflows in
Figure 4, things change. Here the optimal solu-
tion moves from high-risk to lower-risk during
the inflow period and back to higher risk during
the outflow period. To better understand why this
is so, we first re-write the asset weights through
time in Equation (5) for the two-asset case. The
optimal weights of assets 1 and 2 are:

w1,t = 1

2λXt

μ1 − μ2

σ2
1 − 2ρσ1σ2 + σ2

2

+ σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

and

w2,t = − 1

2λXt

μ1 − μ2

σ2
1 − 2ρσ1σ2 + σ2

2

+ σ2
1 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

.

The lowest risk allocations through time namely,
w

(LR)
1,t and w

(LR)
2,t are obtained from the above

formulas by substituting λ = ∞. Observing
that w

(LR)
1,t and w

(LR)
2,t are constant through time,

we will drop the time component from the sub-
script. We notice that in the above equations, as
Xt increases with inflows, the allocation to the
high-risk asset decreases; an opposite behavior is
observed as Xt decreases with outflows. We can

formalize this behavior by saying that for each
asset, the dollar allocation over the lowest risk
solution is constant over time as shown by:

Xtw1,t − Xtw
(LR)
1 = c(λ) and

Xtw2,t − Xtw
(LR)
2 = − c(λ),

where c(λ) is a constant inversely proportional
to λ.

This is an important result that indicates that for
a fixed horizon mean–variance objective func-
tion (and by extension the median–percentile
objective function) the timing and magnitude of
expected inflows and outflows, to first order, have
a significant influence on allocation dynamics. In
order to maintain a constant dollar allocation to
risk through time, the investor will allocate con-
servatively when the portfolio balance is high and
aggressively when the balance is low, resulting
in a U-shaped allocation to risk assets across the
investment horizon. It is worth noting that the
U-shaped allocation will result as long as the port-
folio balance is expected to stay positive (since
the above analytical derivation requires Xt , the
first-order approximation of portfolio balance, to
be positive). However, as the probability of run-
ning out of money materializes due to extended
or higher withdrawals, allocations shift back to
safer assets. The SBPS Income Investor exam-
ple confirms this behavior as we will see later in
Figure 7 (Section 6.4.2). As indicated previously,
the SBPS framework is intended to allow for
different objective functions. Different objective
functions will likely result in different allocation
dynamics.

Asset duration should match the investment
horizon when there are no cash flows

In Figure 3, focusing on the case with no yield
curve slope and no correlation between yield
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curve movements and growth assets, we observe
that the duration of the duration assets mirrors the
remaining investment horizon. This behavior can
also be seen by further examining Equation (7).
More specifically, if we drop the last three terms,
in the absence of future cash flows, the duration
reduces to:

Dt =
T−1−t∑
k=0

1 = T − t.

In this simple example, the desired duration pro-
file could be implemented via a buy and hold
strategy using a duration-matched zero-coupon
Treasury bond. It is interesting to note that
this result comes in contrast to typical hedging
schemes employed by corporate defined bene-
fit plans. Such plans typically employ an LDI
framework focused on managing the funding ratio
volatility. In doing so, these plans may seek
to match the portfolio’s overall duration to the
investment horizon, leading to longer duration
targets than are suggested here. While this makes
sense in the context of a plan fiduciary, it may be
overly restrictive and suboptimal in the context of
maximizing an investor’s terminal wealth as laid
out in this problem.

Duration should be extended (shortened) with
expected inflows (outflows)

In Figure 4, where we introduce inflows and out-
flows, we observe a very dramatic change to
the duration profile when compared to the case
with no flows. Focusing again on the case of
no yield curve slope and no correlation between
yield curve movements and growth assets, we
notice that duration assets start with the max-
imum allowable duration of 30 years and then
very rapidly decrease to a duration profile that
lies below that of the case with no inflow and out-
flows. By going back to Equation (7), assuming

a constant allocation w and dropping irrelevant
terms and re-expanding the partial sum of the cash
flows into individual cash flows, we obtain the
following duration equation:

Dt = T − t + 1

(1 − w)(C0 + · · · + Ct)

×
T−1∑

k=t+1

(1 − w)Ck(T − k)

︸ ︷︷ ︸
contribution of

future cash flows

.

The latter term in the above equation can be
viewed as an adjustment to the previously derived
result. Observing this term more closely, a clear
pattern emerges. Imagine that the duration asset
portion of all future inflows (or outflows) are used
to buy (or sell) bonds maturing at time T . If there
is a way to buy (or sell) those bonds at today’s
rate, then the duration assets would not contribute
to any risk at the end of the investment horizon.
By extending (or shortening) the duration, the
investor is able to effectively lock in buying (or
selling) of duration assets with future inflows (or
outflows) at today’s rate.

The implications of the above are profound, par-
ticularly in situations with prolonged inflows,
where optimal solutions could require dramatic
duration extensions. While this may sound coun-
terintuitive, in the absence of directional views
on interest rates, this will lead to more efficient
long-term results.

Duration should be adjusted based on the slope
of the yield curve, expected correlation of
duration and growth assets, and expected yield
curve changes

Panel C in Figures 3 and 4 demonstrates the sensi-
tivity of solutions to different yield curve slopes as
well as to different correlations between duration
and growth asset returns. The observed patterns
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can also be linked to Equation (7) where we can
postulate, ceteris paribus, the following points:

• If the yield curve is positively sloped, dura-
tion should be extended. This would allow
investors to earn higher returns by invest-
ing in higher yielding assets and provide
the opportunity to earn additional roll-down
returns in more opportunistic fixed-income
strategies.

• If yields are positively correlated with growth
asset returns (i.e., duration asset returns
are negatively correlated with growth asset
returns), duration should be extended. This is
in line with standard diversification benefits
derived from exploiting negative correla-
tions.

• If yields are expected to increase, dura-
tion should be shortened. This would allow
investors to reinvest their assets at increas-
ingly higher rates.

While forming expectations about future yield
levels may be challenging, the more persistent
nature of the slope of the yield curve and the cor-
relation of yield curve movements with growth
asset returns can present a more meaningful path
through which to adjust portfolio durations (if at
all).

5.2 Analytical formulation of the Income
investor objective

Recall that the Income investor’s objective is
to maximize the probability of staying solvent
throughout the investment horizon subject to a
certain level of withdrawal. However, to derive
the analytical heuristics, we use an analyti-
cally tractable proxy objective function which is
to maximize the probability that the first-order
terminal wealth is above zero. For a given amount
of withdrawal to be realized in future years, we

seek to maximize the objective function:

J(W) = Prob(P
(1)
T (W) ≥ 0).

In Appendix C we show that maximizing the
above objective is akin to choosing a solution on
the mean–variance frontier obtained subject to the
cash flows equal to the withdrawal amount. In par-
ticular, the solution is the point of tangency from
the origin to the mean–variance frontier.

This duality principle allows us to borrow insights
from the mean–variance framework and apply
them to the income problem without explicitly
solving for them analytically.

6 Simulation-Based Portfolio Selection
(SBPS)

While the analytical framework serves the essen-
tial purpose of explaining the behavior of the
growth and duration assets in the multi-period
context, analytical approaches become increas-
ingly impractical when seeking to capture higher-
order effects, increasing the number of asset
classes under consideration, introducing more
realistic asset pricing processes, and capturing
investment frictions such as transaction costs
and taxes. Analytical approaches also lack the
flexibility to easily consider different objective
functions.

At the core of the of the SBPS approach is the
optimization process that takes simulated asset
returns and a relevant objective function and
solves for all the weight vectors through time
(w0, w1, . . . , wT−1) = W all at once as opposed
to a period-by-period stepwise approach. As long
as the investor has a model to simulate the port-
folio wealth through time for a given W in the
presence of frictions, the optimization engine
can solve for W in an iterative fashion using an
advanced momentum-based gradient search algo-
rithm. Additionally, such an approach allows us
to optimize any objective function.
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6.1 Simulation

Central to the solutions produced by SBPS are the
underlying stochastic processes used to simulate
the evolution of asset prices across the investment
horizon. Details regarding simulation models are
out of scope for this paper. We assume practi-
tioners can employ a simulation model that can
reflect real-world price dynamics. For the analy-
ses presented in this paper, we used the Moody’s
Analytics Economic Scenario Generator (ESG)
engine to simulate the time-series used for our
analyses. This is one of the most advanced simu-
lation engines available. It simulates nominal and
real rates that are consistent with a simulated infla-
tion process. Asset returns are then simulated in a
way that ensures consistency with the underlying
rate processes.

6.2 The optimization algorithm

A key innovation of the SBPS approach is that
the optimization process simultaneously consid-
ers the totality of the investment horizon and
allocation decisions across the investment hori-
zon. This is in contrast to a period-by-period
approach, such as recursive dynamic program-
ming, which looks at the optimal allocation
decision at time t agnostic of the decisions until
time t. SBPS involves updating all of the weight
vectors (w0, w1, . . . , wT−1) = W simultaneously
as the optimization progresses. We use a large-
scale momentum-based gradient search algorithm
introduced by Kingba and Lei Ba (2015) called
Adam (short for Adaptive Moment Estimation)
which allows us to work with a large num-
ber of weight variables and also provides the
flexibility to optimize non-convex objective func-
tions. For any given objective function J(W) the
optimization problem is:

maximize
W=(w0,w1,...,wT−1)

J(W).

The optimization algorithm iteratively updates a
sequence of weights W(0),W(1),W(2), . . . until
a stopping criterion is satisfied. W(0) =
(w(0)

0 , w(0)
1 , . . . , w(0)

T−1) is a suitably chosen initial
starting weights of the algorithm.

The weight vectors are updated in the direction
of the exponentially weighted moving average
(EWMA) of the gradient as opposed to the current
gradient. Using an EWMA of gradients addresses
some of the key practical challenges which we
will discuss later. The size of the update steps in
the direction of the EWMA of gradient is con-
trolled by an EWMA of squared gradients. Each
iteration consists of following four steps:

Step 1: Compute the current gradient

Given the weights from the last step W(n) =
(w(n)

0 , w(n)
1 , . . . , w(n)

T−1), the current gradient vec-
tor g(n) is computed as:

g(n) = ∂J(W(n))

∂W(n)

= ∂J(w(n)
0 , w(n)

1 , . . . , w(n)
T−1)

∂w(n)
0 ∂w(n)

1 . . . ∂w(n)
T−1

.

Standard gradient calculation approaches, such
as numerically computing the gradient, involve
computing the objective function as many times
as the number of unknowns. For a problem
involving N = 100 assets and T = 40 time
periods, this involves computing the objective
function N × T = 4,000 times which is not
feasible when the objective is simulation based.
Consequently, our approach uses automatic dif-
ferentiation to compute the gradient in a fast
and efficient manner. In computer algebra, every
function can be viewed as a series of arithmetic
operations. Automatic differentiation leverages
this idea and expresses the gradient of the function
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as a chain of differentials corresponding to each
arithmetic operation. It utilizes the fact that the
differentials corresponding to each arithmetic
operation are simple and can be expressed ana-
lytically, and further, by chaining them together
according to the chain rule, automatic differentia-
tion is able to provide a faster method of gradient
calculation.

Step 2: Update EWMA of the gradient

The EWMA of gradients g(0), g(1), . . . is the
sequence of vectors m(0), m(1), . . . such that
m(0) = 0 and

m(n+1) = β1m(n) + (1 − β1)g(n),

where 0 < β1 < 1 is an exponential decay param-
eter. As we can see the EWMA gradient is biased
towards the starting m(0) which is 0. If not bias
corrected, this requires a large number of iter-
ations to mitigate the bias when β1 is close to
1. Adam corrects this behavior by using the bias
corrected EWMA gradient:

m̂(n+1) = m(n+1)

1 − βn+1
1

.

Step 3: Update EWMA of the squared gradient

The EWMA of squared gradients g(0)2, g(1)2, . . .

is the sequence of vectors v(0), v(1), . . . such that
v(0) = 0 and

v(n+1) = β2v(n) + (1 − β2)g(n)2,

where 0 < β2 < 1 is an exponential decay
parameter. Similar to the previous step, the bias
corrected EWMA of squared gradient is:

v̂(n+1) = v(n+1)

1 − βn+1
2

.

Step 4: Update weights

Once the EWMA of the gradient and EWMA of
the squared gradients are obtained, the updated
weights are:

W(n+1) = (
w(n+1)

0 , w(n+1)
1 , . . . , w(n+1)

T−1

)
= (

w(n)
0 , w(n)

1 , . . . , w(n)
T−1

)
+ h

m̂(n+1)

√
v̂(n+1) + ε

,

where h is a parameter controlling the update step
size and is referred to as the learning rate. To
avoid division by zero errors the algorithm uses√

v̂(n)+ε in the denominator as opposed to
√

v̂(n),
where ε is a small positive number typically of the
order of 10−6. Ignoring ε, the ratio m̂(n)/

√
v̂(n) is

called the signal-to-noise ratio (SNR). The algo-
rithm slows down in noisy parts of the surface
as the SNR decreases, conversely, the algorithm
speeds up while passing through less noisy parts
of the surface where the SNR increases.

End: Repeat steps 1 through 4 until convergence

The use of the EWMA of gradients and squared
gradients allows Adam to address a number of
challenges including:

• Surfaces with local maxima where the gradi-
ent evaluates to zero and the standard gradient
search algorithm stops

• Situations where the gradient search has trou-
ble navigating in areas where the gradient
changes much more quickly in one dimension
than in others

• Noisy surfaces (such as simulation-based
objectives) where the gradient can be
unstable

We note that the optimization algorithm applies
50 basis points (bps) transaction costs for the
simulation-based solutions we present.
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We conclude this section by pointing out that
advances in computing power have only recently
allowed for solving the multi-period portfo-
lio selection problem using a simulation-based
approach.6

6.3 Analytical versus simulation-based results

Before putting SBPS to use, we first ran a series of
tests to confirm that the SBPS approach produces
results consistent with the analytical principles
outlined in the previous section. To do this,
we first simulated assets using the same pric-
ing dynamics outlined in the analytical section
and then compared the simulation-based results
of a Median vs Median −15th percentile objec-
tive to the analytical Mean vs Variance results.7

The comparison produced favorable results with
respect to all principles and showed that alloca-
tions and duration profiles produced using SBPS
were well aligned with intuitive analytical expec-
tations. Details of this exercise are provided in
Appendix D.

6.4 SBPS examples and key insights

So far, we have presented cases with limited
investment opportunity sets to allow for a simpli-
fied exposition of expected allocation dynamics
over time. We now move to presenting cases with
much broader investment opportunity sets that
are more relevant to investors from a practical
perspective.8 For these cases we simulate 100,000
paths of annualized total return (TR) time-series
over the investment horizons considered for the
following set of assets:

• US equities
• Developed ex US equities
• Emerging market equities
• US Treasury zero coupon bonds (1-year,

2-year, . . . , 30-year constant maturity TR
indexes)

• TIPS (1-year, 2-year, . . . , 30-year constant
maturity TR indexes)

A subset of summary statistics of the simulated
data is presented in Appendix F.

The use of a set of constant maturity indexes
allows us to replicate the performance of a buy
and hold zero-coupon bonds (or TIPS bonds). For
example, to replicate the performance of a buy
and hold T -maturity zero-coupon bond (or TIPS
bond), one starts with the T -maturity zero-coupon
index (or TIPS index) at time t = 0. At time t = 1,
the T -maturity zero-coupon index (or TIPS index)
is traded for a T − 1-maturity zero-coupon index
(or TIPS index) and so on. Finally, at time t =
T − 1, the 2-year maturity zero-coupon (or TIPS)
index is traded for a 1-year maturity zero-coupon
(or TIPS) index. The optimizer is therefore able
to replicate hold-to-maturity securities from the
above indexes.

For all SBPS examples that follow, it should be
noted that we will be presenting unconstrained
solutions so as to provide the clearest and most
informative exposition of the SBPS approach.
For real-world applications, investors will likely
impose practical constraints on one or more
assets.

6.4.1 SBPS for the growth investor

Our first set of examples of the practical appli-
cation of SBPS will be based on the two Growth
investor scenarios presented in the analytical sec-
tion. We produce simulation-based Median vs
Median–5th percentile efficient frontiers by max-
imizing Median–λ (Median – 5th percentile) for
different levels of the parameter λ ≥ 0. We
highlight three solution points on each of the
simulation-based efficient frontiers, namely a
low-risk solution, a medium-risk solution, and a
high-risk solution. Cash flows, simulation-based
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Growth Investor Scenario 1 (SBPS): Maximize terminal wealth (no cash flows)
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Figure 5 (a) Scenario cash inflows/outflows. Terminal wealth at t = 10 to be determined. (b) Efficient Frontier
of median wealth vs. median – 5th percentile terminal wealth. (c) Optimal allocations and (d) fixed-income
durations for selected solutions.
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Growth Investor Scenario 2 (SBPS): Maximize terminal wealth (with cash inflows and outflows)
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Figure 6 (a) Scenario cash inflows/outflows. Terminal wealth at t = 10 to be determined (b) Efficient Frontier
of median wealth vs. median – 5th percentile terminal wealth. (c) Optimal allocations and (d) fixed-income
durations for selected solutions.
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efficient frontiers, allocations for selected solu-
tions, and durations for selected solutions based
on Growth investor scenarios 1 and 2 are shown
in Figures 5 and 6, respectively.

Based on the SBPS results we make the following
key observations in the context of an investor that
is looking to optimize his future wealth:

SBPS generates allocations and duration pro-
files aligned with analytical expectations

The results show that all the key principles
derived from the analytical examples still hold
true. Specifically, we observe the following:

• Allocations shift to safer (riskier) allocations
as inflows (outflows) occur

• Duration profiles align with investment hori-
zons when there are no cash flows

• Duration is extended (shortened) in the pres-
ence of future inflows (outflows)

SBPS allows for long-term real-world asset
dynamics

The simulation-based approach allows us to
model assets in more flexible and realistic ways
that can be incorporated into a simplistic ana-
lytical model. For example, all fixed-income
instruments are priced off of simulated interest
rate curves. This allows for such instruments to be
more consistently priced while also better reflect-
ing current market realities (i.e., meaningfully
skewed due to a low rate environment). This
means that interest rate curve paths are in turn
aligned with market realities (i.e., meaningfully
skewed due to a low rate environment). Correla-
tions between rates and equities are assumed to be
slightly negative (as opposed to the slightly posi-
tive correlation experience over the past decade).

Effects like the ones mentioned above are directly
incorporated and meaningfully impact the result-
ing solutions. One such example can be seen

in the medium-risk solution for Scenario 1 (no
cash flows) where we see a shortening of duration
early on to enhance returns (center chart of panel
C in Figure 5). This is due to the simulated
set of interest rate paths capturing a changing
interest rate environment. Observe in Table F1
of Appendix F, the shorter maturity zero-coupon
bonds, namely 1-year to 5-year, exhibit higher
returns than longer maturity zero-coupon bonds in
the earlier years reflecting an embedded rising rate
expectation. In this case, a balance is being struck
between matching duration and seeking returns.
The assumption of slightly negative correlation
between rates and equities further magnifies the
observed behavior.

SBPS allows for the consideration of
investment frictions and illiquidities

Simulation also allows for consideration of
investment frictions and illiquidities. The simu-
lations used for these analyses include assumed
transaction costs of 50 bps. This not only incorpo-
rates the impact of transaction costs on expected
outcomes, but also encourages the optimization
process to produce solutions that exhibit lower
turnover. An example of this can again be seen
in Scenario 1 (no cash flows) where the low-
est risk solution (left-most chart of panel C in
Figure 5) involves holding a sequence of 10-year,
9-year, . . . , 1-year zero-coupon indexes through
time. This sequence of holdings is partially driven
by the avoidance of transaction costs. This point
is better understood when one realizes that this
sequence of holdings is equivalent to buying and
holding a 10-year Treasury zero-coupon bond to
maturity.

6.4.2 SBPS for the income investor

Our second example of the practical application of
SBPS is that of an income investor. Here we con-
sider an investor who wants to withdraw a fixed
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amount of income in retirement. The investor is
currently 40 years old and plans to retire at age
60. He expects to pull annual consumption cash
flows from his portfolio for 20 years.

Income Investor: Maximize real consumption
cash flows for a given probability of remaining
solvent.

• A 40-year investment horizon
• An initial investment of $100,000
• Annual inflows of $50,000 (nominal) for the

first 20 years
• Annual outflows begin in year 20 and con-

tinue until year 40

Note that we allow for the possibility of working
with both nominal cash flows (contributions) and
real cash flows (income withdrawals). In real dol-
lar terms, nominal contributions have less value
as we go out in the future. In Appendix E, we
detail the conversion of nominal dollars into real
dollars and vice versa. This conversion allows us
to work in one single unit.

The goal of the income maximization problem is
to maximize the probability of success for a given
level of income withdrawal. From a risk–reward
perspective, the income levels in the y-axis repre-
sent our reward and one minus the probability of
success on the x-axis is our measure of risk. We
maximize the objective J(W) = Prob(τA(W) ≥
T + 1) which is the probability of staying sol-
vent until the end of the investment horizon for
the income withdrawal amount denoted by the
parameter A. We produce the Income investor’s
efficient frontier by increasing the income level
A and plotting it against one minus the max-
imized probability of success. In Figure 7 we
present the cash flows in real dollar terms, the
income investor’s efficient frontier, and the allo-
cations and the real durations for the three selected
solutions. Here we note that the highest risk solu-
tion on the income frontier has 100% allocated

to riskier assets during inflows. On increasing
the income level further, the allocation does not
change materially, and the exercise reduces to
simply simulating the probability of success for
increasing levels of withdrawal as opposed to run-
ning an optimization. This part of the income
frontier is represented by the dotted portion in
panel (b) of Figure 7.

Lowest risk solutions seek duration early on
and diversify with growth assets in later years

Observing the lowest risk allocation in panel C of
Figure 7, the solution focuses on duration assets
with extended durations early in the investment
horizon. At this early stage, it is most impor-
tant to eliminate the interest rate risk associated
with future purchases (and dispositions) of bonds
that will be required based on expected upcom-
ing inflows/outflows. As the portfolio progresses
through the investment horizon and expected out-
flows increasingly outweigh expected inflows,
solutions require less dollar duration. Conse-
quently, allocations gradually shift to shorter
duration bonds and introduce growth asset expo-
sures for diversification purposes.

Highest risk solutions focus on growth assets
early with duration being added in later years

In the high-risk solution in panel C of Figure 7, we
see that instead of maintaining a 100% allocation
to growth assets through time, the solution moves
to safer assets as outflows begin. Intuitively, dur-
ing inflows, the solution seeks maximum return
and, consequently, maximum risk. The outflow
period is not as intuitive but can be explained as
follows: Once outflows begin, they are assumed
to be constant and there is also no utility for
any remaining portfolio balance following those
outflows. As a result, for a given cash outflow
amount, the more successful paths will have no
remaining upside and will only be exposed to the
downside risk of becoming insolvent. To mitigate
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Income Investor (SBPS): Maximize real consumption cash flow/probability of remaining solvent
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Figure 7 (a) Cash inflows/outflows in real dollar terms. (b) Efficient frontier of distribution vs. 1-probability
of success. The dotted line represents the simulated probabilities beyond the highest risk solution. (c) Optimal
allocations and (d) fixed-income durations of selected solutions.
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this effect, once the outflows begin, the portfo-
lio is seen to gradually move to some duration
assets.

7 Conclusion

In this paper, we presented a simulation-based
portfolio selection framework that addresses
what we initially established as three requisites
for the development of practical multi-period
solutions:

1. Solutions must evolve allocations and dura-
tion over time to align with expected cash
flows

2. Solutions must consider real-world asset
dynamics

3. Solutions must consider investment frictions
and illiquidities

To provide intuition for the multi-period problem,
we detailed an analytical framework that consid-
ers the distinction between growth and duration
assets. As part of this process we also defined
objective functions for two common investor
types: Growth investors, who seek to maxi-
mize terminal wealth, and Income investors,
who seek to maximize a series of future cash
flows. We presented analytical solutions for these
objectives under scenarios where no cash flows
were expected and where both cash inflows and
outflows were expected and under cases when
only growth assets were considered and when
both growth and duration assets were consid-
ered. We then analyzed sensitivities of alloca-
tions and durations to cash flows, correlations
between assets and to the slope of the yield curve.
Through this analysis we developed several guid-
ing principles relating to how portfolio allocations
and durations should evolve over a multi-period
investment horizon.

Finally, we introduced a simulation-based port-
folio selection framework that decomposes the

multi-period problem into three distinct parts:
the objective function, simulation, and opti-
mization. Using the growth investor and income
investor objective functions, asset simulations
that incorporated real-world asset dynamics, and
an optimization algorithm that simultaneously
considers the totality of the investment horizon
and allocation decisions across the investment
horizon, we then produced multi-period solu-
tions that were not only aligned with the princi-
ples developed as part of our analytical exercise
but also demonstrated the flexibility afforded
by SBPS in allowing us to more effectively
address the three stated requisites for practical
multi-period solutions.

Key innovations of this research include:

1. The development of an analytical frame-
work for the multi-period problem that pro-
vides a theoretical foundation for multi-period
portfolio selection and provides intuition for
how portfolio allocations and duration should
evolve through time.

2. The development of a flexible simulation-
based multi-period portfolio selection frame-
work that addresses the practical realities
of implementing and managing multi-period
solutions and allows for the incorporation
of individual hold-to-maturity fixed-income
investments alongside traditional investments
used for strategic asset allocation.

3. Methods for leveraging of advances in com-
puting power and machine learning algorithms
to solve multi-period portfolio selection prob-
lems using a simulation-based approach.
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Appendix A: Analytical Framework for the
Growth Investor’S Objective Without
Duration Assets

The N × 1 vectors rt are the return vectors at
t = 0, 1, . . . , T − 1 and they are assumed to be
independently and identically distributed (i.i.d.)
normal random variables with mean μ and covari-
ance matrix �. The N × 1 weight vectors wt at
t = 0, 1, . . . , T −1 can be thought of having N−1
free weights in the first N − 1 assets represented
by w(N−1)

t = (wt,1, wt,2, . . . , wt,N−1) and the
weight of the N-th asset is wt,N = 1 − 1T w(N−1)

t

where 1 is the N − 1 × 1 vector of all ones. We
also introduce the N × 1 index vector ek which
has one at the k-th position and zero everywhere
else; and let I be the N − 1 × N − 1 identity
matrix. The weight vector becomes wt = eN +
(I−1)T w(N−1)

t . Recall that the first-order approx-
imation of terminal wealth from Equation (4)
is:

P
(1)
T (W) =

T−1∑
t=0

XtwT
t rt + XT .

Therefore, the mean and variance of the terminal
wealth is:

E(P
(1)
T ) = XT +

T−1∑
t=0

XtwT
t μ and

V(P
(1)
T ) =

T−1∑
t=0

X2
t wT

t �wt .

The covariance term in the variance formula dis-
appears since we assume that return vectors are
independent across time. The partial derivatives
of the expectation and variance with respect to
w(N−1)

t are:

∂E(P
(1)
T )

∂w(N−1)
t

= Xt(I −1)μ = Xtm

and

∂V(P
(1)
T )

∂w(N−1)
t

= 2X2
t

∂wt

∂w(N−1)
t

�wt

= 2X2
t (I − 1)�wt

= 2X2
t (I − 1) �eN + 2X2

t (I − 1)

× �(I − 1)T w(N−1)
t

= − 2X2
t b + 2X2

t Aw(N−1)
t ,

where

m = (I −1)μ

b = (−I 1)�eN

A = (I −1)�(I −1)T .

We note that if � is positive definite, then so
is A; this is because if c is any non-zero N −
1 × 1 vector, then d = (I −1)T c is also non-
zero which implies cTAc = dT�d > 0. The
positive definiteness of A ensures that by equat-
ing ∂E(P

(1)
T )/∂w(N−1)

t −λ∂V(P
(1)
T )/∂w(N−1)

t to 0
we can obtain a unique maximizing solution to
the mean–variance problem, and the solution is
given by:

w(N−1)
t = A−1

(
1

2λXt

m + b
)

.

Appendix B: Analytical Framework for the
Growth Investor’s Objective with Duration
Assets

Consider portfolio selection with one growth
asset and an arbitrary collection of duration assets.
At any given time t the portfolio has wt invested
in the growth asset and 1 − wt invested in dura-
tion assets with duration Dt . The duration asset
at time t + 1 has a remaining duration of Dt − 1.
Under our simplistic yield process, the yield curve
has a total slope of s up to maturity Tmax, i.e., the
slope increases by �s = s/Tmax for each maturity
point. The yield of the duration asset at time t and
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t+1 are yt +�sDt and yt+1 +�s(Dt −1) respec-
tively. We have used the assumption that the yield
of this bond is roughly equal to the yield of a Dt-
maturity zero coupon bond. The one period return
of the duration asset is given by:

r
(Dt)
t = exp(−(Dt − 1)(yt+1 + �s(Dt − 1)))

exp(−Dt(yt + �sDt))
− 1

= exp(−Dt�yt + 2�sDt − �s + yt

+ �yt) − 1

≈ yt − �yt(Dt − 1) + (2Dt − 1)�s

= yt + �sDt︸ ︷︷ ︸
yield return

+ �s(Dt − 1)︸ ︷︷ ︸
carry from rolling

down the yield curve

− �yt(Dt − 1)︸ ︷︷ ︸
random

.

Using yt = y0 + �y0 + �y1 + · · · + �yt−1 we
can also write r

(Dt)
t as:

r
(Dt)
t = (y0 + 2�sDt − �s) + (�y0 + �y1

+ · · · + �yt − Dt�yt).

Let μD be the vector of the mean returns of the
duration asset through time. Then, the t-th ele-
ment of μD is given by E(r

(Dt)
t ) = (y0+2�sDt−

�s) + (μy,0 + μy,1 + · · · + μy,t − μy,tDt). The
first-order terminal wealth can be re-written as:

P
(1)
T = XT + μgwT Xd1 + (1 − w)T XdμμμD

+
T−1∑
t=0

Xtσgzg,t

+
T−1∑
t=0

σyzy,tht(wt, . . . , wT−1, Dt),

where the equity returns are expressed as r
(E)
t =

μg + σgzg,t and the yield changes as �yt =
μy,t + σyzy,t . The random variables zg,t and zy,t

are N(0, 1) such that cov(zg,t, zy,t) = ρg,y and

ht(wt, . . . , wT−1, Dt) = Xt(1 − wt) + · · · +
XT−1(1 − wT−1) − Xt(1 − wt)Dt .

The expectation and the variance of the terminal
wealth are given by:

E(P
(1)
T ) = XT + μgwT Xd1 + (1 − w)T XdμD

and

V(P
(1)
T ) = σ2

gwT X2
dw + σ2

y(1 − w)T XT
u Xu(1 − w)

+ 2ρg,yσgσywT XdXu(1 − w),

where

μD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0 + 2�sD0 − �s

+ μy,0 − μy,0D0

y0 + 2�sD1 − �s

+ μy,0 + μy,1 − μy,1D1

...

y0 + 2�sDT−1 − �s

+ μy,0 + · · ·
+ μy,T−1 − μy,T−1DT−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Xd =

⎛
⎜⎜⎜⎜⎝

X0 0 · · · 0

0 X1 · · · 0
...

...
. . .

...

0 0 · · · XT−1

⎞
⎟⎟⎟⎟⎠ and

Xu =

⎛
⎜⎜⎜⎜⎝

X0 X1 · · · XT−1

0 X1 · · · XT−1

...
...

. . .
...

0 0 · · · XT−1

⎞
⎟⎟⎟⎟⎠

− diag (D)Xd.

B.1 Weight formula

The weight formula can be obtained analytically
if the optimal durations to hold through time
are known. If the optimal durations are known,
the objective E(P

(1)
T ) − λV(P

(1)
T ) is quadratic in
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w = (w0, w1, . . . , wT−1). The partial derivatives
of the expectation and variance of the first-order
terminal wealth are:

∂E(P
(1)
T )

∂w
= μgXd1 − XdμD = m

and

∂V(P
(1)
T )

∂w
= 2(σ2

gX2
d + σ2

yXT
u Xu

− 2ρg,yσgσyXdXu)w

+ 2(ρg,yσgσyXdXu

− σ2
yXT

u Xu)1

= 2Uw + 2v.

Setting the partial derivative of the objective to
zero, we obtain the optimal equity weights w.

w = U−1
(

1

2λ
m − v

)
.

Remark (Non-negative definiteness of U): U must
be a non-negative definite matrix so that the
weight vector derived above is the maximizing
solution. We show below that U is non-negative
definite. Note that we can re-write U as:

U = (σgXd + σyXu)
T (σgXd + σyXu)

− 2(1 + ρg,y)σgσyXdXu.

For any real matrix M, MT M is non-negative def-
inite. Thus, (σeXd + σyXu)

T (σeXd + σyXu) is
non-negative definite. Additionally, when Dt ≥ 1
for all t = 0, 1, . . . , T − 1, all the diagonal ele-
ments of−XdXu are either positive or zero making
−XdXu a non-negative definite matrix. The sum
of two non-negative definite matrixes is also non-
negative definite which makes U non-negative
definite. When U is not positive definite, unique-
ness of the solution is not guaranteed. We can
ensure uniqueness by using a regularized matrix
U + εI which is positive definite for any ε > 0;
typically, ε is a small number.

B.2 Duration formula

The optimal duration can be obtained analytically
if the optimal weights are known. The partial
derivatives of the expectation and variance with
respect to Dt are:

∂E(P
(1)
T )

∂Dt

= (2�s − μy,t)Xt(1 − wt)

and

∂V(P
(1)
T )

∂Dt

= 2σ2
yht

∂ht

∂Dt

+ 2ρg,yσgσyXtwt

∂ht

∂Dt

.

Observe that ∂ht/∂Dt = −Xt(1−wt). Setting the
partial derivative of the objective function to zero
and going through a series of algebraic manipu-
lations, we obtain the formula for Dt . The steps
are:

(2�s − μy,t)Xt(1 − wt) + 2λσ2
yhtXt(1 − wt)

+ 2λρg,yσgσyX
2
t wt(1 − wt) = 0.

Without loss of generality, we can assume wt < 1,
i.e., there is a positive allocation to the duration
asset. Thus, we can simplify the above equation
as:

2�s − μy,t + 2λσ2
yht + 2λρg,yσgσyXtwt = 0

ht + ρg,yσgXtwt

σy

+ 2�s − μy,t

2λσ2
y

= 0.

Usinght(wt, . . . , wT−1, Dt) = Xt(1−wt)+· · ·+
XT−1(1 − wT−1) − Xt(1 − wt)Dt we get

Xt(1 − wt)Dt

= Xt(1 − wt) + · · · + XT−1(1 − wT−1)

+ ρg,yσgXtwt

σy

+ 2�s − μy,t

2λσ2
y

,
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which gives:

Dt =
T−1−t∑
k=0

Xt+k(1 − wt+k)

Xt(1 − wt)
+ ρg,yσgXtwt

σyXt(1 − wt)

+ 2�s − μy,t

2λσ2
yXt(1 − wt)

.

To observe that this is indeed the maximizing
solution, we look at the second-order partial
derivatives:

∂2E(P
(1)
T )

∂D2
t

= 0 and

∂2V(P
(1)
T )

∂D2
t

= 2σ2
yX

2
t (1 − wt)

2,

which gives ∂2E(P
(1)
T )/∂D2

t −λ∂2V(P
(1)
T )/∂D2

t ≤
0 meaning that the above solution is indeed the
maximizing solution.

Remark (Lowest Risk Solution): We seek a
solution, if exists, such that V(P

(1)
T ) = 0, i.e.,

we seek w = (w0, w1, . . . , wT−1) and D =
(D0, D1, . . . , DT−1) that satisfies V(P

(1)
T ) = 0.

It is easy to see that V(P
(1)
T ) = 0 when w = 0 and

Xu1 = 0. The equality Xu1 = 0 implies that for
any t = 0, 1, . . . , T − 1

Xt(1 − Dt) + Xt+1 + · · · + XT−1 = 0,

i.e.,

Dt = 1 + Xt+1

Xt

+ · · · + XT−1

Xt

.

In practical implementations, however, a zero-
variance solution is not achievable due to non-
availability of a continuum of duration required
in the above formula as well as higher-order
effects of the terminal wealth that we have not
considered.

Appendix C: Analytical Heuristics for the
Income Problem

In this section, we derive the analytical heuristics
that allows us to think about the Income investor’s
objective and link it to the solution of the ana-
lytical mean variance problem. We observe that
when the returns of the duration and the non-
duration assets are jointly normally distributed,
then the first-order terminal wealth which is a
sum of normal random variables is also normally
distributed. Let the weights in the non-duration
assets through time be w = (w0, w1, . . . , wT−1)

and the durations of the duration assets through
time be D = (D0, D1, . . . , DT−1). Then the first-
order terminal wealth subject to an additional
income withdrawal A can be written as:

P
(1)
T (w, D, A) = μ(w, D, A) + σ(w, D, A)z,

where z is a standard normal variable. Note that
the Income investor’s objective defined previ-
ously was to maximize the probability that the
portfolio wealth does not fall below zero until
the end of the investment horizon. However, to
derive the analytical heuristics we use a simpler
objective function which is to maximize the prob-
ability that terminal wealth is greater than zero.
Mathematically, this simpler objective function is
defined as:

J(W) = Prob(P
(1)
T (w, D, A) ≥ 0).

The objective function can be further simplified
to:

P(P
(1)
T (w, D, A) ≥ 0)

= P

(
z ≥ −μ(w, D, A)

σ(w, D, A)

)

= �

(
μ(w, D, A)

σ(w, D, A)

)
,

where � is the standard normal CDF. Since � is
monotonically increasing, the above function is
maximized when the ratioμ(w, D, A)/σ(w, D, A)
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Figure C1 Maximum probability of success point
lies on the mean–variance (MV) efficient frontier (EF).

is maximized. If we fix a certain σ(w, D, A), the
ratio is maximized when μ(w, D, A) is the corre-
sponding y-value of the mean-variance efficient
frontier. In terms of maximizing this ratio, any
point below the efficient frontier can be discarded,
i.e., the solution must lie on the efficient frontier.
Furthermore, for all (x, y) pairs on the efficient
frontier, the ratio y/x is maximized when the line
from the origin to the (x, y) point forms a tangent
line on the efficient frontier. This is demonstrated
in Figure C1.

We highlight a key concept here which is the dual-
ity between the mean–variance optimization and
the income optimization. We underscore the fact
that for a given withdrawal level, the maximum
probability of success solution is the point of
tangency from the origin to the mean–variance
efficient frontier. The analytical solution of the
income optimization problem is nothing but the

analytical solution of the corresponding tangent
point on the mean–variance frontier.

Furthermore, for different levels of withdrawal
A1 < A2 < A3 < · · · < An < · · · , we
can obtain a sequence of mean–variance efficient
frontiers and subsequently pick a point on each of
them that corresponds to the maximum probabil-
ity of success for these income levels respectively.
The sequence of the tangency points when plotted
as one minus the probability of success (x-axis)
versus withdrawal levels (y-axis) produces the
income efficient frontier.

Remark (Allocation stops changing materially
around 50% success probability): As income
withdrawal increases, expected values from the
mean–variance efficient frontier decrease and at
a certain income level the whole efficient fron-
tier drops below zero. At this income level, the
maximum probability of success is achieved on
the furthest point of the mean–variance efficient
frontier where the probability is �(0), i.e., 50%.
On further increasing the income withdrawal,
the efficient frontier keeps falling below the zero
line; however, the maximum probability of suc-
cess point is still the furthest point on the frontier.
The allocation of the furthest point on the efficient
frontiers below the zero line does not differ mate-
rially and is characterized by heavy allocation
towards equities.

Figure C2 Income efficient frontier (right) as a solution of a sequence of mean variance solutions (left).
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Appendix D: Analytical Versus
Simulation-Based Results

For this exercise we simulate 200,000 paths based
on our stylized two-process model from Section 5
using the same problem parameters (Growth

Investor Scenario 2). We generate the return series
of a growth asset and 30 constant maturity Trea-
sury zero-coupon bond indexes with maturities
of 1-year, 2-year, . . . , 30-year which are priced
off of the simulated yield curve paths. The use of
constant maturity indexes facilitates the process

Growth Investor Scenario 2: Analytical versus simulation-based results
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Figure D1 Cash flow schedule with terminal wealth at t = 10 to be determined along with a comparison of
allocations and durations for the analytical and SBPS approaches under the simplistic growth-duration model.
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of allocating to hold-to-maturity investments.
While allocations are made to indexes, imple-
mentation is accomplished through investments
in hold-to-maturity assets. Calculated durations
are a function of the combination of the con-
stant maturity indexes indicated by the solution
which should closely match that of the cor-
responding hold-to-maturity assets. Figure D1
presents the simulation-based equity allocations
and fixed-income durations through time for var-
ious correlation coefficients and yield curve slope
scenarios along with the equity allocations and
durations from our analytical framework.

Based on this analysis, we make the following
observations:

• The simulation-based approach produces
optimal allocation and duration outcomes that
are closely aligned with our analytical results

• In general, the Median vs Median-percentile
allocations start with higher equity alloca-
tions and end with lower equity than the
analytical Mean–Variance allocation. This is
so because in the analytical framework, the
growth of the portfolio balance does not com-
pound beyond the first order which results in
lower balances and higher allocations to the
risky asset.

Appendix E: Conversions Between Real and
Nominal Dollars

A real cash flow is essentially a nominal cash
flow discounted by the inflation index. Assume
we have an inflation index I at time t = 0, I = I0.
Let Ct,N and Ct,R be a nominal and a real cash flow
in future time t.

The nominal cash flow Ct,N can be expressed in
nominal and real terms as

C
(N)
t,N = Ct,N and C

(R)
t,N = Ct,N

I0

It

.

Similarly, the real cash flow Ct,R can be expressed
in nominal and real terms by

C
(N)
t,R = Ct,R

It

I0
and C

(R)
t,R = Ct,R.

The above identities allow us to unify nomi-
nal and real cash outflows in a single unit, i.e.,
either a nominal unit or a real unit. We can also
use the above identities to go back and forth
between nominal and real portfolio wealth and
asset returns. Let the portfolio wealth at time t

be expressed in nominal and real terms be P
(N)
t

and P
(R)
t , and let the nominal and real cash flows

through time be Ct,N and Ct,R for t = 0, 1, . . . , T .
Then, portfolio wealth evolution in nominal and
real terms can be described by:

P
(N)
t+1 = P

(N)
t (1 + wT

t rt) + Ct+1,N

+ Ct+1,R

It+1

I0

and

P
(R)
t+1 = P

(R)
t (1 + wT

t rt)
It

It+1

+ Ct+1,N

I0

It+1
+ Ct+1,R.

Appendix F: Exploratory Statistics
of Simulation Data

We summarize the mean arithmetic return (μ) and
the standard deviation (σ) of returns of some key
indexes at t = 0, 1, 2, 3, 4, 5, 7, 10, 20, 30, 40 in
Table F1. In Table F2 we present the average
correlation matrix of the assets. The average is
taken over all correlation matrices observed at
t = 0, 1, 2, . . . , 40.

Disclaimer

The views expressed herein are those of the
authors and do not necessarily represent the views
of Invesco.
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Notes

1 Duration-targeted investments refer to strategies that
exhibit relatively stable duration characteristics. Dura-
tion targeting can be explicit or implicit. Most
benchmark-aware bond funds implicitly target dura-
tion as a function of tracking a specific benchmark,
such as an intermediate-term bond index, that is reg-
ularly rebalanced to meet specific maturity specifica-
tions. Consequently, standard fixed-income investments
behave more like constant maturity or constant duration
assets.

2 The necessary conditions indicated by Markowitz were
the following:

1 The investor owns only liquid assets;
2 he maximizes the expected value of the utility of

consumption;
3 the set of available probability distributions remain the

same through time.
3 Only recently has computational power evolved to allow

for the computation of dynamic programming solutions
to more practical multi-period portfolio selection prob-
lems. However, the number of state variables remains an
important consideration.

4 The simplifying assumptions from Mossin/Samuelson/
Merton were the following:

1 Asset returns are i.i.d.;
2 investors have constant relative risk aversion utility;
3 all assets are liquid and tradeable;
4 markets are frictionless and complete; and
5 utility depends only on terminal wealth

5 Time-dependence is used to describe instances where the
tax rate that applies to an investment is dependent on the
length of time an investment is held. For example, in the
US, capital gains for investments held for less than 1 year
are taxed at a higher rate than if an investment is held for
longer than 1 year.

6 Over the last decade there have been significant advance-
ments in hardware technologies with Nvidia and AMD
introducing general purpose Graphics Processing Units
(GPUs) around the mid-2000s. Nvidia then launched
CUDA in 2006, a software development kit (SDK) and
application programming interface (API) that allows C
programs to be executed on GPUs. Since then, GPUs
have come a long way in terms of speed and han-
dling big data. In 2017, Google released TensorFlow
1.0, which implements large-scale machine learning
algorithms that can leverage GPU hardware. This combi-
nation of advanced GPUs and machine learning libraries

has allowed us to solve the multi-period portfolio selec-
tion problem using a simulation-based approach.

7 For a normal distribution, the distance between the
median and the 15th percentile is roughly equal to one
standard deviation.

8 To facilitate the exposition of the practical application of
SBPS, we do not explicitly account for the taxation of
assets in the solutions presented. However, the approach
allows for the flexibility to allow for the incorporation of
a model for asset taxation that can then be used to pro-
vide optimal after-tax solutions to multi-period portfolio
selection problems.
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